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introduction

In this presentation we study a model for treatment of brain tumors of
[Chakrabarty, Hanson 2009] :

Otyr = A10wyt +ai(1 — y1/ki)yr — (a1.22 + K1,33) Y1

Otyo = thOx o + a(1 — Vo /ko)yo — (11 + K2,3)3)

Otys = d30xxYs — @sys + U (1)
Yi(x,0) =yioV1<i<3

Onyi =0V 1<i<3
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In this presentation we study a model for treatment of brain tumors of
[Chakrabarty, Hanson 2009] :

diffusion

——
Oyr = diOxxyr +ai(1 = yi/ki)yr — (o202 + K13Y3) 1
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our system for every injection u.
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- At first we study the existence of a unique mathematical solution of
our system for every injection u.

- And in a second time, we suppose that we "control" the injection u
and we want :

@ to minimize the density of tumor cells y; during all the treatment,
@ to minimize the injection u during all the treatment,

© density of tumor cells y; near zero at the time T,

© the drug concentration y3 near zero at the time T.
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introduction

General framework

Let W a Banach space. We want to study first the system

ay(t)
{ =5 T AV =1y(0),1) (2)
y(0) = yo.

where A is a linear operator on W, f € L'(0, T; W) and y, € W.
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Property of solutions
°

Infinitesimal generator of a semigroup

DEFINITION

A one parameter family S(t), 0 < t < oo, of bounded linear operators
from W into W is a Cy semigroup of linear operators on W if

Q@ S(0) =1,
Q S(s+t)= S(s)S(t) forevery t, s > 0.
Q vxe Wlim [|S(t)x = x|w = 0.
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Infinitesimal generator of a semigroup

DEFINITION

A one parameter family S(t), 0 < t < oo, of bounded linear operators
from W into W is a Cy semigroup of linear operators on W if

Q S(0)=1,
Q S(s+t)= S(s)S(t) forevery t, s > 0.
Q vxe W!irrg) |S(t)x — x|y = 0.
An operator A is the infinitesimal generator of the semigroup S(t) if
D(A) = {x eW: lim S(t))t(_xexists} i A = Ty S &

t—0 t—0
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Property of solutions
©0000

General Case

DEFINITION (P. Meyer-Nieberg)

An ordered set (M, <) is a /attice if for all x, y € M sup(x, y) and
inf(x, y) existand for all x,y € E

Ix|e < |yle = [Ixlle < lI¥lle, (3)

where |y|g = sup(y, —y) Vy € E.
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General Case

DEFINITION (P. Meyer-Nieberg)

An ordered set (M, <) is a /attice if for all x, y € M sup(x, y) and
inf(x, y) existand for all x,y € E

Ix|e < |yle = [Ixlle < lI¥lle, (3)

where |y|g = sup(y, —y) Vy € E.

We suppose that W and V := D(A) are Banach lattices.

A operator A is called positive, if

AWt c wt.

And a Co semigroup (S(t))r~o is called positive,
if S(t) is positive for all ¢
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Property of solutions
0®000

General Case

CONDITION

The function f : W x Rt — W and A satisfies :
@ fisof class C!
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such that:
(ye 61(]07 T W)nc([0, T]; D(A)) and Ymin < ¥ < Ymax)
= (WYmin(t) < F(y(2), 1) + Ay(t) < AYmax(t))

@ -Ainfinitesimal generator of a Cy positive semigroup (Sa(t));

M. Duprez Optimal control of reaction-diffusion systems June 3, 2013 10/23



Property of solutions
0®000

General Case

CONDITION

The function f : W x Rt — W and A satisfies :
@ fisof class C!

@ there exists X > 0 and Ymin, Ymax € W With Aymin = AVmax = 0
such that:
(ye 61(]07 T W)nc([0, T]; D(A)) and Ymin < ¥ < Ymax)
= (WYmin(t) < F(y(2), 1) + Ay(t) < AYmax(t))

@ -Ainfinitesimal generator of a Cy positive semigroup (Sa(t));

THEOREM (D. et al, 13’)

Forall T > 0, Ymin < Yo < Ymax, the system (2) has a unique sol. in
C'(10, T]; W) n ([0, T; D(A)) and ymin < ¥ < Ymax-
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Property of solutions
00@00

General Case

Consider A\ = A+ Aldand f, = f+ \ld.
If a solution y verifies

t
"y(t)=e My +/ e~ =9, (y(s), s)ds”,
0
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t
Yt =e Mt [ e INn(y(s),s)as
0

then

Toy(t) —tA 9 i ‘ N
5 =-Ae *yoJrae */O e f(y(s),s)ds
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= —Ae My, — Ave ™ | M (y(s),8)ds
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If a solution y verifies

t
"y(t) = e My, +/ e~ =9, (y(s), s)ds”,
0

then

Y t
L(t) = —A)\eitAA}/() + geitAA / e f)\(y(S), S)dS
ot ot 0,

= —Ae My —Ae ™ | e (y(s), s)ds

Ay 1A
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Property of solutions
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Consider Ay = A+ \ldand fy = f + \/d.
If a solution y verifies

t
Y(t) = ey + / e~ (=94 £, (y(s), 5)ds",
0

then

”n t
W) _ ety D eom / e 1 ((s), 5)ds
ot ot 0,

— Ao My — Ave ™ [ eM A (y(s), s)ds

tAO tA
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t
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ot

t

=—Ave Py + (%e*“‘A / e f(y(s), s)ds
0
t

= —Ave Py — Ave= / e (y(s), s)ds
0
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=1
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Property of solutions
00080

General Case

Proof : We consider the set
M:={yecC(0, T;W):y(0)= Yo, Ymin < Y(t) < ¥Ymax Vt € [0, T]}.

We want to apply the Banach’s fixed point theorem to

t
P(Y)(t) = Sa, (Do + /0 S, (t— ) (¥(5), S)ds.
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Property of solutions
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-Letbeyelrand0<tT
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Property of solutions
0000e

General Case

-Letbeyelrand0<tT

t
P(y)(t) < S—aa(t)yo + / S_a-a(t = 9)[f(y(s), 5) + Ay(s)]lds
< S_a-a( }/0+/ S_a-a(t = 8)[M\Ymax + AYmax]ds
< S_a-a(B)(Yo — Ymax) + +S—a-2(0)Ymax
Then ¢ preserves I'.

Moreover we can prove that its a contraction,
then by the Banach fixed point theorem, we have the result.
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Property of solutions
€00

Application

LetQCcR3 T>0, Qr:=(0,T) x Q.
Our system was

0
BE T DA = an(t i Ky — (an 28+ oY)y

oye
ot

9s
ot

Yi(x,0) =yioV1<i<3

+ oAy = ax(1 — yo/ke)y2 — (2,1 y1 + K2,3Y3) Y2

+ d3Ays = —asgays + U
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Property of solutions
€00

Application

LetQCR3 T>0, Qr:=(0,T) xQ
Our system was

5/; + diAyr = ai(1 — y1/Ki)y1 — (a1,2¥2 + K1,3Y3) 1
e gn 1 k

S T A= ac(1— yo/ko)ye — (a2,1y1 + K2,3Y3)Ye
19)'%)

67};‘ + 0sAys = —asgsys + U

Yi(x,0) =yioV1<i<3

where A is defined by

A H(Q) — H'(Q)

u e (e (A ) ay @) = (VU Vo) ) - “)
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Property of solutions
o] 1]

Application

To simplify the notations, let be Y = (y4, y2, y3) " and

%\: = DAY +b(Y)+ U
Y(x,0) = Yo )
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Application

Property of solutions
o] 1]

To simplify the notations, let be Y = (y4, y2, y3) " and

where

%:DAY'Fb(Y)'FU

Y(X, 0) = Yo

D = diag(d1 y d2, C/3)7

b(Y)=(S+ T)(Y)Y,

S(Y) = diag(ai(1 — y1/k1), a82(1 — y2/ ko), —as),

T(Y) = diag(— (a1 2y2 + K1,3Y3), —(a2,1y1 + K2,3¥3),0),
U=(0,0,u).

15/23
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Property of solutions

Application
To simplify the notations, let be Y = (y4, y2, y3) " and
%\: = DAY +b(Y)+ U
Y(x,0) = Yo )
where
D= diag(d1 y d2, C/3)7
b(Y) = (S+ T)(Y)Y,
S(Y) = diag(ai(1 — y1/ki1), a(1 — y2/k2), —as),
T(Y) = diag(—(a1,2)2 + K1,3Y3), —(az2,1y1 + K2,3Y3),0),
U=(0,0,u).
and the the operator A defined by
A H'(Q) —H(Q) )

u = (o= (A o)y me) = (YU, Vo)izg) -

(L2(Q) = L2()°, H'(Q) = H'(2)%))
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Property of solutions
ocoe

Application

THEOREM (D. et al, 13’)

For allYo € 1.2(Q) and all T > 0, the system (5) has a unique solution
inC(0, T; H'(Q))nC'(0, T; H'(Q)").
Moreover we have

0 < yi(t,x) <k (7)

almost for all x € Qr and i € {1,2,3}, where ks = ||u||oc + ||U3,0

oo -
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Control

Plan

Q Optimal Control
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We consider the following optimal problem

UiEanja J(Y,U) (8)
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We consider the following optimal problem

Uleanla J(Y,U) (8)
where
J(Y,U) = % / (Nvy2(x, ) + NE2(x, 1)) dtdx
Qr
+/ (Miy2(x, T) + Msy5(x, T)) dx — inf,
Q
oY

i + DAY = b(Y) + U in Qr,
Y(0, %) = Yo in ©,
Uc Uy = {(U1, Uo, U3) IS L2(QT) U= =0,0<u3 < Umax}-

(9)
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THEOREM (D et al, 13’)

There exists a solution (Y,0) € W(0, T) x L2(Qr)® to the problem (8),

where W(0, T) = {y € [2(0, T; H'(Q)); % € [2(0, T; H'(Q)')}.
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Perspectives

Conlusion : we have existence and uniqueness of a solution of our
system and existence of a minimum of our functional.
Perspectives :
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Conclusions and persectives

Perspectives

Conlusion : we have existence and uniqueness of a solution of our
system and existence of a minimum of our functional.
Perspectives :

@ stability and convergence of a numerical scheme for this problem
© boundary control

@ a general study with many medicaments and cells

@ try the model with clinical data
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Thank you for your attention ©®
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