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introduction Property of solutions Control Conclusions and persectives

In this presentation we study a model for treatment of brain tumors of
[Chakrabarty, Hanson 2009] :

∂ty1 = d1∂xxy1 + a1(1− y1/k1)y1 − (α1,2y2 + κ1,3y3)y1

∂ty2 = d2∂xxy2 + a2(1− y2/k2)y2 − (α2,1y1 + κ2,3y3)y2

∂ty3 = d3∂xxy3 − a3y3 + u
yi (x ,0) = yi,0 ∀ 1 6 i 6 3
∂nyi = 0 ∀ 1 6 i 6 3

(1)

where
1 y1 is the density of tumor cells,
2 y2 is the density of normal cells,
3 y3 is the drug concentration,
4 u is the rate at which the drug is being injected,
5 di , ai , ki , αi,j , κi,j are known constants.
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Goal

- At first we study the existence of a unique mathematical solution of
our system for every injection u.
- And in a second time, we suppose that we "control" the injection u
and we want :

1 to minimize the density of tumor cells y1 during all the treatment,
2 to minimize the injection u during all the treatment,
3 density of tumor cells y1 near zero at the time T ,
4 the drug concentration y3 near zero at the time T .
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General framework

LetW a Banach space. We want to study first the system{
∂y(t)
∂t

+ Ay(t) = f (y(t), t)
y(0) = y0.

(2)

where A is a linear operator onW, f ∈ L1(0,T ;W) and y0 ∈ W.
We say that (2) is "semilinear" because :

1 A is linear,
2 f is not linear.

If A = ∂xx , we say that (2) is a "reaction-diffusion" equation :
1 "reaction" for ∂t ,
2 "diffusion" for ∂xx .
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Infinitesimal generator of a semigroup

DEFINITION

A one parameter family S(t), 0 6 t 6∞, of bounded linear operators
fromW intoW is a C0 semigroup of linear operators onW if

1 S(0) = I,
2 S(s + t) = S(s)S(t) for every t , s > 0.
3 ∀x ∈ W lim

t→0
‖S(t)x − x‖W = 0.

An operator A is the infinitesimal generator of the semigroup S(t) if

D(A) =

{
x ∈ W : lim

t→0

S(t)x − x
t

exists
}

and Ax = lim
t→0

S(t)x − x
t
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General Case

DEFINITION (P. Meyer-Nieberg)

An ordered set (M,6) is a lattice if for all x , y ∈ M sup(x , y) and
inf(x , y) exist and for all x , y ∈ E

|x |E 6 |y |E ⇒ ‖x‖E 6 ‖y‖E , (3)

where |y |E = sup(y , −y) ∀y ∈ E .

We suppose thatW and V := D(A) are Banach lattices.

DEFINITION

A operator A is called positive, if

AW+ ⊂ W+.

And a C0 semigroup (S(t))t>0 is called positive,
if S(t) is positive for all t > 0.
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General Case

CONDITION

The function f :W × R+ →W and A satisfies :
1 f is of class C1

2 there exists λ > 0 and ymin, ymax ∈ W with Aymin = Aymax = 0
such that:
(y ∈ C1(]0,T ];W) ∩ C([0,T ]; D(A)) and ymin 6 y 6 ymax )
⇒ (λymin(t) 6 f (y(t), t) + λy(t) 6 λymax (t))

3 -A infinitesimal generator of a C0 positive semigroup (SA(t))t

THEOREM (D. et al, 13’)

For all T > 0, ymin 6 y0 6 ymax , the system (2) has a unique sol. in
C1(]0,T ];W) ∩ C([0,T ]; D(A)) and ymin 6 y 6 ymax .
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General Case

Consider Aλ = A + λId and fλ = f + λId .
If a solution y verifies

”y(t) = e−tAλy0 +

∫ t

0
e−(t−s)Aλ fλ(y(s), s)ds”,

then

M. Duprez Optimal control of reaction-diffusion systems June 3, 2013 11 / 23



introduction Property of solutions Control Conclusions and persectives

General Case

Consider Aλ = A + λId and fλ = f + λId .
If a solution y verifies

”y(t) = e−tAλy0 +

∫ t

0
e−(t−s)Aλ fλ(y(s), s)ds”,

then

”∂y(t)
∂t

= −Aλe−tAλy0 +
∂

∂t
e−tAλ

∫ t

0
esAλ fλ(y(s), s)ds”

M. Duprez Optimal control of reaction-diffusion systems June 3, 2013 11 / 23



introduction Property of solutions Control Conclusions and persectives

General Case

Consider Aλ = A + λId and fλ = f + λId .
If a solution y verifies

”y(t) = e−tAλy0 +

∫ t

0
e−(t−s)Aλ fλ(y(s), s)ds”,

then

”∂y(t)
∂t

= −Aλe−tAλy0 +
∂

∂t
e−tAλ

∫ t

0
esAλ fλ(y(s), s)ds

= −Aλe−tAλy0 − Aλe−tAλ

∫ t

0
esAλ fλ(y(s), s)ds

+ etAλe−tAfλ(y(t), t)”

M. Duprez Optimal control of reaction-diffusion systems June 3, 2013 11 / 23



introduction Property of solutions Control Conclusions and persectives

General Case

Consider Aλ = A + λId and fλ = f + λId .
If a solution y verifies

”y(t) = e−tAλy0 +

∫ t

0
e−(t−s)Aλ fλ(y(s), s)ds”,

then

”∂y(t)
∂t

= −Aλe−tAλy0 +
∂

∂t
e−tAλ

∫ t

0
esAλ fλ(y(s), s)ds

= −Aλe−tAλy0 − Aλe−tAλ

∫ t

0
esAλ fλ(y(s), s)ds

+e−tAλetAλ︸ ︷︷ ︸
=1

fλ(y(t), t)”

M. Duprez Optimal control of reaction-diffusion systems June 3, 2013 11 / 23



introduction Property of solutions Control Conclusions and persectives

General Case

Consider Aλ = A + λId and fλ = f + λId .
If a solution y verifies

”y(t) = e−tAλy0 +

∫ t

0
e−(t−s)Aλ fλ(y(s), s)ds”,

then

”∂y(t)
∂t

= −Aλe−tAλy0 +
∂

∂t
e−tAλ

∫ t

0
esAλ fλ(y(s), s)ds

= −Aλe−tAλy0 − Aλe−tAλ

∫ t

0
esAλ fλ(y(s), s)ds

+e−tAλetAλ︸ ︷︷ ︸
=1

fλ(y(t), t)

= −Aλy(t) + fλ(y(t), t)

M. Duprez Optimal control of reaction-diffusion systems June 3, 2013 11 / 23



introduction Property of solutions Control Conclusions and persectives

General Case

Consider Aλ = A + λId and fλ = f + λId .
If a solution y verifies

”y(t) = e−tAλy0 +

∫ t

0
e−(t−s)Aλ fλ(y(s), s)ds”,

then

”∂y(t)
∂t

= −Aλe−tAλy0 +
∂

∂t
e−tAλ

∫ t

0
esAλ fλ(y(s), s)ds

= −Aλe−tAλy0 − Aλe−tAλ

∫ t

0
esAλ fλ(y(s), s)ds

+e−tAλetAλ︸ ︷︷ ︸
=1

fλ(y(t), t)

= −Aλy(t) + fλ(y(t), t)
= −Ay(t) + f (y(t), t).”

M. Duprez Optimal control of reaction-diffusion systems June 3, 2013 11 / 23



introduction Property of solutions Control Conclusions and persectives

General Case

Proof : We consider the set

Γ := {y ∈ C(0,T ;W) : y(0) = y0, ymin 6 y(t) 6 ymax ∀t ∈ [0,T ]}.

We want to apply the Banach’s fixed point theorem to

ψ(y)(t) := SAλ(t)y0 +

∫ t

0
SAλ(t − s)fλ(y(s), s)ds.
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General Case

- Let be y ∈ Γ and 0 6 t 6 T

ψ(y)(t) 6 S−A−λ(t)y0 +

∫ t

0
S−A−λ(t − s)[f (y(s), s) + λy(s)]ds

6 S−A−λ(t)y0 +

∫ t

0
S−A−λ(t − s)[λymax + Aymax ]ds

6 S−A−λ(t)(y0 − ymax ) + +S−A−λ(0)ymax

Then ψ preserves Γ.
Moreover we can prove that its a contraction,
then by the Banach fixed point theorem, we have the result.
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Application

Let Ω ⊂ R3, T > 0, QT := (0,T )× Ω.
Our system was

∂y1

∂t
+ d1Ay1 = a1(1− y1/k1)y1 − (α1,2y2 + κ1,3y3)y1

∂y2

∂t
+ d2Ay2 = a2(1− y2/k2)y2 − (α2,1y1 + κ2,3y3)y2

∂y3

∂t
+ d3Ay3 = −a3g3y3 + u

yi (x ,0) = yi,0 ∀ 1 6 i 6 3

where A is defined by

A : H1(Ω) → H1(Ω)′

u 7→
(
ϕ 7→ 〈Au, ϕ〉H1(Ω)′,H1(Ω) = 〈∇u,∇ϕ〉L2(Ω)

)
.

(4)
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Application

To simplify the notations, let be Y = (y1, y2, y3)> and
∂Y
∂t

= DAY + b(Y) + U
Y(x ,0) = Y0

(5)

where

D = diag(d1,d2,d3),
b(Y) = (S + T )(Y)Y,
S(Y) = diag(a1(1− y1/k1),a2(1− y2/k2),−a3),
T (Y) = diag(−(α1,2y2 + κ1,3y3),−(α2,1y1 + κ2,3y3),0),
U = (0,0,u).

and the the operator A defined by

A : H1(Ω) → H1(Ω)′

u 7→
(
ϕ 7→ 〈Au, ϕ〉H1(Ω)′,H1(Ω) = 〈∇u,∇ϕ〉L2(Ω)

)
.

(6)

(L2(Ω) = L2(Ω)3,H1(Ω) = H1(Ω)3))
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Application

THEOREM (D. et al, 13’)

For all Y0 ∈ L2(Ω) and all T > 0, the system (5) has a unique solution
in C(0,T ; H1(Ω)) ∩ C1(0,T ; H1(Ω)′).
Moreover we have

0 6 yi (t , x) 6 ki (7)

almost for all x ∈ QT and i ∈ {1,2,3}, where k3 = ‖u‖∞ + ‖u3,0‖∞.
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We consider the following optimal problem

inf
U∈U∂

J(Y,U) (8)

where

J(Y,U) =
1
2

∫
QT

(
N1y2

1 (x , t) + Nu2(x , t)
)

dtdx

+

∫
Ω

(
M1y2

1 (x ,T ) + M3y2
3 (x ,T )

)
dx → inf,

∂Y
∂t

+ DAY = b(Y) + U in QT ,

Y(0, x) = Y0 in Ω,
U ∈ U∂ = {(u1,u2,u3) ∈ L2(QT ) : u1 = u2 = 0,0 6 u3 6 umax}.

(9)
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THEOREM (D et al, 13’)

There exists a solution (Ŷ, Û) ∈W(0,T )× L2(QT )3 to the problem (8),

where W (0,T ) = {y ∈ L2(0,T ; H1(Ω));
∂y
∂t
∈ L2(0,T ; H1(Ω)′)}.
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Perspectives

Conlusion : we have existence and uniqueness of a solution of our
system and existence of a minimum of our functional.
Perspectives :

1 stability and convergence of a numerical scheme for this problem
2 boundary control
3 a general study with many medicaments and cells
4 try the model with clinical data
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Thank you for your attention ,
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